計畫團隊成員

 
圖片1-2

總計畫
Main Project

辛裕明  教授

國立中央大學電機系

圖片2-2

子計畫一
Subproject 1

邱顯欽  教授

國立長庚大學電子系

圖片3-1

子計畫二
Subproject 2

夏勤  助理教授

國立中央大學電機系

圖片4-2

子計畫三
Subproject 3

邱煌仁  特聘教授

國立臺灣科技大學電子系

圖片5-2

子計畫一共同主持人
Subproject 1 CO-PI

綦振瀛  教授

國立中央大學電機系

 
圖片6-2

子計畫四
Subproject 4

郭浩中  特聘教授

國立交通大學光電系

圖片7-2

子計畫五
Subproject 5

劉宇晨  副教授

國立宜蘭大學電機系

圖片8-2

子計畫六
Subproject 6

林法正  教授

國立中央大學聯合研究中心

 

技術亮點 Technical Highlights


採用寬能隙氮化鎵元件/積體電路建構的高功率轉換器 (DC/DC Converter)系統,分別採用表面安裝封裝元件和積體化來達成高效率、高頻、高功率密度目標。關鍵技術亮點包括,
1. 磊晶成長技術降低GaN元件導通電阻

2. 開發低傷害乾蝕刻技術完成在同一晶片上二種加強型和空乏型GaN元件
3. 具新型變壓器設計之高頻低耗損LLC諧振式轉換器
4. 高頻全GaN二次側/低測驅動電路晶片

3 kW DC/DC converters by GaN devices/ICs operated at > 2 MHz with 60W/cm3 power density and > 97 % efficiency. The technical highlights include,
1. Novel GaN epitaxial growth to reduce RON
2. Low damage dry etching for E-mode and D-mode GaN HEMTs
3. Resonant LLC converter with novel transformer design for > MHz operation and reducing loss
4. High-frequency all GaN low-side driver design

 

應用情境 Applications


對於能源的需求不斷提高,寬能隙半導體是發展低耗能的關鍵元件之一,其優點為切換速度快,低導通電阻及高耐熱係數。此元件可應用在充電器、換流器以及伺服電源供應器等系統。以資料中心的建置為例,隨著人類對資通訊服務的依賴逐年提高,光是大數據運算以及雲端運算,預估在2020年就將消耗全球10%的電能。因此用於資通訊服務的電源轉換器的效率若有1%的進步,將對於整體的用電量有極大的影響,相當於省下10 TWH,可節省數座的核電廠。

As the demand for energy consumption continues to increase, wide-bandgap GaN semiconductors are one of the key components for the development of low-energy loss applications. The advantages are fast switching speed, low on-resistance and high heat conduction. This GaN component can be used in systems such as chargers (converters), inverters, and servo power supplies. Take the establishment of the data center as an example. With the increasing demand for human resources on communication services, it is estimated that by 2020, 10% of the world's electricity will be consumed by only big data computing and cloud computing. Therefore, if the efficiency of the power converter is increased by 1%, it will have a great impact on the overall power consumption, which is equivalent to saving 10 TWH, which can save several nuclear power plants.
 

示意圖 Schematic Diagram

 

其他技術介紹


綜合預期效應上,因為此計畫由GaN磊晶片開發,元件設計/製程開發,元件可靠度研究,元件模型件建立,到最後的轉換器/換流器研發,並在每一階段都有業界參與,所以預期效應相當豐碩。包括
新型GaN磊晶片開發,相關磊晶公司的參與,早期商業化或技轉可能性高。
高壓高電流元件設計/製程開發,經由製程等公司的技術交流,元件特性的改善,提高GaN功率元件公司的進一步在地化選擇。
元件可靠度研究,結合磊晶技術/製程技術提升GaN HEMT的可靠度,可提高GaN功率元件的高電壓應用面/深度,提供系統公司的採用。
轉換器/換流器的研發,不管是積體化與否,電子電路的設計能力皆以GaN HEMT/SBD呈現,改善效率和單位功率,達到世界一流水準,並突破矽功率元件限制。

Because this project is developed from GaN epitaxial, device design/process, component reliability study, device modeling, to final converter/converter implementation. So the expected achievements are quite rich including
 New GaN epitaxial wafer development, related to the participation of epi-house and the possibility of early commercialization or technology transfer.
 High-voltage and high-current device design/process development, through the technical exchange of the local companies, to reduce the time-to-product.
 Device reliability study, combined with epitaxial technology/process technology to improve the reliability of GaN HEMT, can improve the high voltage application, and provide system companies.
 Converter/converter implementation, whether integrated or not, the design capability of electronic circuits is presented in GaN HEMT/SBD, improving efficiency and unit power, reaching world-class standards and breaking through the limitations of Si-based power components.

 

影音介紹 Media

射月計畫第一年成果發表會